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Information on where species occur is an important component of conservation and management decisions, but knowledge of distributions is 
often coarse or incomplete. Species distribution models provide a tool for mapping habitat and can produce credible, defensible, and repeatable 
information with which to inform decisions. However, these models are sensitive to data inputs and methodological choices, making it important 
to assess the reliability and utility of model predictions. We provide a rubric that model developers can use to communicate a model’s attributes 
and its appropriate uses. We emphasize the importance of tailoring model development and delivery to the species of interest and the intended 
use and the advantages of iterative modeling and validation. We highlight how species distribution models have been used to design surveys for 
new populations, inform spatial prioritization decisions for management actions, and support regulatory decision-making and compliance, tying 
these examples back to our model assessment rubric.
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Information on species distributions underlies nearly    
every aspect of managing biodiversity, including efforts 

to conserve rare species, anticipate problematic invasions, 
identify biodiversity hotspots, and delimit valued habitat 
types (Franklin 2010). Information about where individuals 
of a species are or could exist is a key component to legally 
binding decisions, such as regulatory actions under the US 
Endangered Species Act (ESA; Schwartz 2008, Camaclang 
et al. 2015) and establishment of quarantine zones for inva-
sive species (Robinson et al. 2017). Species distributions also 
inform management activities, such as those found in state 
wildlife action plans (Fontaine 2011). Typically, information 
used for these purposes consists of narrowly delimited point 
or polygon representations of observed species occurrences, 
maps based on opinions (blob maps, sensu Jetz et al. 2008), 
or maps indicating the presence of a species within a geopo-
litical boundary, such as a county (figure 1; Jetz et al. 2012). 
Each of these summaries has substantial limitations. Point 
observations underestimate the occupied area of a species 
and conflate sampling biases and underlying distributions 
(Rondinini et  al. 2006). Geopolitical and expert-created 
maps can overestimate a species’ occupied area and often 
lack transparency and repeatability (Jetz et al. 2008, Peterson 
et  al. 2016). In each of these cases, variation in sampling 

effort, geopolitical delimitations, and documentation of 
expert decisions can result in a degree of arbitrariness that 
may undermine credibility for decision-making (Hurlbert 
and Jetz 2007).

Species distribution models (SDM) use known locations 
of a species and information on environmental conditions 
to predict species distributions. SDM use a variety of algo-
rithms to estimate relationships between species locations 
and environmental conditions and predict and map habitat 
suitability (Franklin 2010). The conceptual underpinnings 
of SDMs originated in the midtwentieth century to describe 
a species’ niche in both environmental and geographic space 
(Colwell and Rangel 2009). In the early 2000s, the increasing 
availability of geospatial data and computational resources 
led to a rapid expansion of analytical methods and case 
studies exploring the many uses and caveats of SDMs (Elith 
and Leathwick 2009). More recently, SDMs have matured 
to a point where the distributions that they predict have 
found success in numerous on-the-ground conservation 
efforts (Guisan et  al. 2013). SDMs are now easily imple-
mented thanks to well-tested modeling algorithms (e.g., 
Elith et al. 2006), ever-increasing accessibility of occurrence 
information, and software and computational resources that 
facilitate model fitting and visualization (Thuiller et al. 2009, 
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Morisette et al. 2013, Kass et al. 2018). The distributions pro-
duced by SDMs can ameliorate some of the mischaracteriza-
tions that arise from biased and sparse sampling of natural 
populations (Phillips et al. 2009), can provide more localized 
predictions than maps based on geopolitical boundaries, 
and can be reproducible in a way that maps based on expert 
opinion are not. Nevertheless, there remains a need to 
address SDMs’ high sensitivity to data inputs and method-
ological decisions to ensure that models can effectively and 
efficiently inform conservation and management decisions 
across both jurisdictional boundaries and a range of legal 
and social contexts.

Four major criticisms have been leveled against SDMs 
that have inhibited their use in management decision-
making: First, they are overcomplicated and difficult for 
a broad audience to interpret. They lack expert intuition, 
particularly when methodological choices are not rooted in 
relevant natural history knowledge. Variation in the quality 
of input data and model-development decisions can result 
in important differences in the predicted distributions. And 

careful interpretation of model output is necessary when 
distinguishing correlative representations of potential (i.e., 
within a species’ niche) versus actual (i.e., currently occu-
pied) distributions (Jiménez-Valverde et al. 2008, Araújo and 
Peterson 2012, Guisan et al. 2013). The first two criticisms 
are general to many models, and can be best addressed via 
clear communication, involving experts and end users in the 
modeling process, and considering the process of structured 
decision-making (Addison et  al. 2013, Guisan et  al. 2013, 
Morisette et al. 2017). The final two criticisms (sensitivity to 
data and modeling processes, and issues of interpretation) 
are methodological concerns that speak to the credibility of 
a particular SDM and its context-dependent utility.

To be used effectively in decision-making, the entire 
process used to build any model—including an SDM—must 
be credible, transparent, and reproducible (Guisan et  al. 
2013, Villero et  al. 2016, Morisette et  al. 2017). There are 
numerous decisions that must be made in estimating and 
interpreting species distribution models, including those 
about the input data, modeling processes, and depiction of 

Figure 1. Comparison of data types often used to represent species distributions, shown in the present article for the 
threatened frosted flatwoods salamander Ambystoma cingulatum including (a) species observation points (NatureServe 
2017), (b) a range map (International Union for Conservation of Nature et al. 2007), (c) county records (US Fish and 
Wildlife Service 2018), and (d) predicted suitable habitat from a species distribution model (Florida Natural Areas 
Inventory 2017).
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model outputs (Franklin 2010). Modeled responses to envi-
ronmental variables and mapped model predictions should 
be scrutinized and not treated as truth, and performance 
assessments (including enumeration of strengths and weak-
nesses) should be clearly documented and communicated. 
Support for the interpretation of model outputs should be 
accessible to people that lack technical expertise in species 
distribution modeling for those products to bear on impor-
tant decisions.

Here, we establish guidelines for model development 
and communication to provide a framework for assessing 
the suitability of a given SDM for a particular purpose. We 
provide an assessment rubric (table 1a–1d) for evaluating 
and communicating the quality of SDM inputs and model-
ing methods. This rubric defines the attributes of models 
important for end users and provides objective criteria for 
comparing the context-dependent utility of models pro-
duced by different researchers, agencies, or organizations. 
Referencing the SDM assessment rubric (table 1a–1d), we 
review the use of SDMs for informing three types of deci-
sions: designing field surveys, prioritizing locations and 
actions for conservation and management, and supporting 
regulatory decision-making. We provide examples of how 
SDMs have been applied in these three common decision 
categories and emphasize the importance of iterative model-
ing (reestimating models to incorporate new information) 
and model validation. The generalities of these three deci-
sion categories are highlighted by including use cases cover-
ing a range of taxonomic groups, geographies, and spatial 
extents from the United States.

In considering the use of SDMs in decision-making, it 
is important to recognize that model outputs alone do not 
determine outcomes, but are combined with expert knowl-
edge, resource constraints, priorities, and other information 
to inform decisions. In some cases, SDMs may provide lim-
ited added value, often because spatial information on the 
factors that truly limit distributions is unavailable, or because 
key threats are not represented within SDM inputs (Tulloch 
et al. 2016). However, given the many situations where the 
efficacy of species management and conservation actions 
would benefit from improved distribution information, the 
SDM rubric outlined in the present article (table 1a–1d) 
provides a means of evaluating SDMs and improving com-
munication between modelers and practitioners who could 
benefit from the information SDMs can provide.

Guidelines for model development and delivery
Guidelines for production of SDMs are important because 
results are often sensitive to methodological decisions, 
and the intended uses of an SDM’s output can alter the 
decisions made during model development (Guisan and 
Zimmermann 2000, Araújo et al. 2019). To determine how 
much to emphasize a model’s output in a given decision-
making process, end users need accessible information 
about how a distribution model was produced, and what it 
should and should not be used for. Does the model conform 

to basic SDM standards? Were the environmental predictors 
selected based on taxon-specific natural history informa-
tion? Have taxonomic or regional experts reviewed the 
predicted distribution?

We describe the major steps involved in developing a 
species distribution model along with criteria to classify 
modeling inputs and procedures as interpret with caution, 
acceptable, or ideal (table 1a–1d). The criteria in this table 
offer a rubric for evaluating the scientific uncertainty of 
SDMs. A model with some criteria classified as interpret 
with caution may still be useful to guide additional field 
surveys to support iterative modeling (Wisz et al. 2008) or 
to gain a qualitative understanding of a species’ distribu-
tion. Conversely, a single criterion classified as interpret with 
caution may undermine the utility of a model for a given 
application, particularly when the quality of input data is 
poor. Model attributes classified as ideal are developed using 
current best practices from the academic literature, but those 
practices are often beyond the scope of what is feasible given 
limited time and resources, particularly in many resource 
management situations. Standards for the quality (i.e., inter-
pret with caution, acceptable, or ideal) of model attributes 
may be higher for models intended to guide decisions at 
fine spatial resolutions or with important consequences. 
Producing user friendly, comprehensive summaries of mod-
eling decisions and their implications for appropriate use is 
a key part of the development of credible and relevant model 
outputs.

Choices in model development
It is not our intent to duplicate existing publications that 
have evaluated modeling choices, such as reviewing impor-
tance of inputs (Jarnevich et  al. 2015) or comparing dif-
ferent statistical algorithms (Elith et  al. 2006). Rather, we 
reiterate that although there is no “best” modeling method 
for all contexts (Merow et al. 2014, Qiao et al. 2015), there 
is general agreement over many aspects of producing SDMs 
(Araújo et al. 2019). Data quality and quantity matter. This 
includes the number and precision of presence locations 
(Graham et  al. 2008, Wisz et  al. 2008), whether a model 
relies on background or pseudoabsence information ver-
sus higher quality absence data (Barbet-Massin et al. 2012, 
Guillera-Arroita et al. 2015), and the data’s biases, including 
those associated with detection and sampling. Evaluation 
metrics are most reliable when derived from independent 
data (table 1a; Roberts et al. 2017). Predictors are best when 
they are related to factors that govern the distribution of tar-
get species and are geographically and temporally matched 
to occurrence data (table 1b). The use of ensemble methods 
and visualizations provide ways to recognize explicitly that 
no single model is likely to be ideal and instead to integrate 
outputs from multiple models (table 1c; Araújo and New 
2007). Comparing and combining outputs from models pro-
duced with different predictors, methods, or assumptions 
provides a tool for decision-making in the face of uncer-
tainty and has the added benefit of being able to readily 
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Table 1a. Effects of the quantity and quality of species data on model credibility.
Interpret with caution Acceptable Ideal References

Presence data Poor or unassessed 
quality of data (precision, 
taxonomy). 

Spatial error in coordinates 
< spatial grain of model. 
Correction of taxonomic 
inconsistencies. 
Confirmation of outlying 
presences and spatial 
thinning as needed. 

Verified and spatially precise 
records or weighting of 
occurrences to place greater 
emphasis on locations with 
lower coordinate error. 

Graham et al. 2008, Lozier 
et al. 2009

Absence/
background data 

Background data does 
not mimic sampling bias 
in presence locations. 
Background data across 
much broader extent than 
presence data. 

Sampling of background 
points to mimic sampling 
biases in data and/or 
sensitivity analyses to 
evaluate effects of different 
background data sets.

Design-based sampling of 
both presence and absence 
locations. Any combination of 
data sets done in statistically 
compatible manner. May 
require explicit modeling of 
detection biases.

Phillips et al. 2009, 
Barbet-Massin et al. 2012, 
Guillera-Arroita et al. 2015

Evaluation data Based on training data. Based on cross-validation of 
training data (spatial cross-
validation preferred).

Based on independent data 
from separate sampling effort.

Roberts et al. 2017, 
Fourcade et al. 2018

Table 1b. Attributes of environmental predictors affecting model credibility.
Interpret with caution Acceptable Ideal References

Ecological and 
predictive relevance

Arbitrary sets of predictors. Selection of predictors 
justified based on natural 
history.

Predictors represent factors 
known to govern distributional 
limits or are direct signals 
of species presence (e.g., 
remotely sensed indices). 

Guisan and Zimmermann 
2000, Petitpierre et al. 
2017, Fourcade et al. 2018

Spatial and 
temporal alignment

Poor coverage of 
environmental variability 
and relevant geographic 
area. Temporal alignment of 
species data and predictors 
not considered.

Predictors encompass the 
study area and time period. 
Resolution of predictors 
is appropriate given 
uncertainty and for the focal 
species.

Training data encompass 
environmental variability in 
focal time and place.

Roubicek et al. 2010

Table 1c. Attributes of the modeling process affecting model credibility.

Interpret with caution Acceptable Ideal References

Algorithm choice Models prone to overfitting 
used for extrapolation, 
goals of prediction versus 
explanation confounded. 

Selection of algorithm 
aligned with objectives, 
including need for 
actual versus potential 
distribution.

Selection of algorithm aligned 
with objectives, including 
need for actual versus 
potential distribution. Multiple 
evaluated.

Qiao et al. 2015

Sensitivity Single algorithm without 
evaluation of settings. 
Ensemble of multiple 
algorithms based on 
default settings and without 
assessment of sensitivity. 

Assessment of sensitivity to 
choice of algorithm(s) and 
selected settings and input 
data.

Multiple algorithms with 
evaluation of model settings 
and input data, model 
agreement and uncertainties 
evaluated via ensemble 
techniques.

Araújo and New 2007

Statistical rigor Assumptions not recognized 
or evaluated.

Assumptions recognized 
and considered.

Assumptions formally 
evaluated.

Dormann 2007, Dormann 
et al. 2013

Performance Based on single metric, 
and/or evaluation scores 
are below generally 
accepted levels.

Multiple metrics evaluated 
and evaluation scores are 
close to generally accepted 
levels, ecological plausibility 
evaluated.

Multiple metrics evaluated with 
scores at or above generally 
accepted levels, scores 
connected with implications 
for intended use considered, 
ecological plausibility is described 
and supported with data or 
references.

Jarnevich et al. 2015

Model review Model released without 
review or reviewers have 
potential conflicts of 
interest.

Review by regional and 
taxonomic experts, their 
comments considered 
in model revisions or in 
recommendations for its 
use. 

Regional and taxonomic expert 
review conducted and model 
updates considered. Reviews 
and associated metadata 
transparent, and no potential 
conflicts of interest. 

Guisan et al. 2013

Iterative No. Updated based on 
expert review and other 
performance assessments. 
Not updated based on new 
field observations.

Updated via targeted field 
sampling and incorporation of 
new field data into subsequent 
model iterations.
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assimilate models developed by different stakeholders, if 
applicable.

The way in which model outputs are provided can be 
tailored to the intended use, both for individual models and 
for ensemble models. Using continuous predictive output 
from models, in which predictions range from 0 to 1, can 
have advantages over output classified into a binary map, in 
which each location is defined as either suitable or unsuit-
able habitat, because this binary conversion entails the loss 
of information (Guillera-Arroita et  al. 2015). However, 
many applications of species distribution modeling do 
use the conversion of a continuous mapped surface into 
a binary map (Liu et  al. 2005). This transition is made by 
considering continuous values above a selected threshold to 
be potentially suitable. Practitioners can select a threshold 
that appropriately reflects the context-specific costs of false 
positives (predicting habitat where there is none) versus 
false negatives (not recognizing habitat). Therefore, the 
same continuous model output can be tailored for a specific 
intended use (figure 2). Threshold choice depends not only 
on the context but also on the set of models being considered 
and the degree to which each model may underpredict or 
overpredict habitat availability.

It is critical to assess model performance and uncertainty 
in a manner guided by the focal application. For example, 
even models based on irrelevant predictors can yield rea-
sonable distributions in the region of the training data but 
will perform poorly if extrapolated to new areas (Fourcade 
et  al. 2018). Tools for quantifying and visualizing model 

extrapolation are available (Owens et al. 2013), but assess-
ing extrapolation performance requires independent data. 
Prediction of future range expansion and contraction is 
similarly challenging, and SDMs may not be reliable for 
identifying either the species likely to exhibit the great-
est change in range size, nor the locations in which such 
changes may occur (Rapacciuolo et  al. 2012, Sofaer et  al. 
2018). Assessment of models should include computation 
of performance metrics selected according to the intended 
use (Jarnevich et al. 2015, Sofaer et al. 2019). For example, 
minimizing false negatives is likely to be important in 
ESA consultations, while minimizing false positives may 
increase success when surveying for the location of new 
populations. The model assessment should also include an 
evaluation of ecological plausibility (Elith and Leathwick 
2009), ideally based on criteria identified a priori. This will 
generally be a qualitative assessment by taxonomic and 
regional experts, focusing on whether modeled relation-
ships between predictor variables and habitat suitability 
align with knowledge of the species’ natural history and 
physiology, and whether the spatial pattern of predicted 
suitability reasonably reflects known and likely occurrence 
locations (table 1c).

Iterative modeling for decision support
An iterative process that reflects collaborations between 
modelers, species experts, and practitioners can increase 
model relevance and utility. Using existing occurrence data 
from open-access repositories and best practices, modelers 

Table 1d. Attributes of the model products affecting model credibility.

Interpret with caution Acceptable Ideal References

Mapped products Binary, classified, or 
continuous map produced 
without clear description to 
interpret range of values. 
If a threshold map is 
produced, a single default 
threshold used for all 
applications. Use of 0.5 
as a threshold for poorly 
calibrated models.

Continuous map with clear 
description to interpret 
range of values. Thresholds 
based on test data (e.g., 
sensitivity equals specificity) 
but not necessarily linked to 
intended use.

Continuous predictions 
mapped with description 
or used as basis for 
derived products (e.g., 
sampling design). Or, 
threshold selected based 
on intended use and 
model assessment, with 
exploration of sensitivity. 
Mapping of uncertainties 
and extrapolation.

Liu et al. 2005, Owens et al. 
2013, Guillera-Arroita et al. 
2015, Liu et al. 2016

Interpretation 
support products

None or inadequate to 
assess key decisions. Little 
or no description of predictor 
variables or methods.

Enough information to 
evaluate every row in this 
table. Where explanation 
is a goal, description 
of variables and their 
importance. 

Information to easily 
evaluate every row in this 
table. Where explanation 
is a goal, description 
of predictor variable 
importance and estimated 
relationships to response for 
focal variables. Engagement 
with user community to help 
define objectives, guide the 
development and interpret 
results. 

Reproducibility Inputs not saved/published, 
settings from modeling 
GUI not saved or code not 
annotated and saved.

Inputs saved and made 
available (excepting 
locations of rare species), 
scripts, settings, and model 
results archived.

Inputs saved and made 
available (excepting 
locations of rare species). 
Scripts, settings, model 
results archived. Species 
expert and modeler identity 
known.
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can often reach the acceptable criteria for relatively well-
known taxa, such as vascular plants and vertebrates. Moving 
from acceptable to ideal will often require the acquisition of 
new field data and collaborations between species experts, 
modelers, and end users. Open and clear communication 
can both improve models and promote uptake of model 
outputs into decision-making processes (Addison et  al. 
2013). New field efforts can increase the quantity, relevance, 
accuracy, and resolution of species and environmental data. 
Visualizing maps and response curves can help experts 
understand what aspects of a species’ ecology a model 
appears to have captured appropriately, and expert knowl-
edge of a species’ natural and life-history traits can be used 
to suggest additional or alternative predictors. In turn, itera-
tive modeling can increase understanding of species eco-
logical requirements. Iterative modeling provides a means 
to move from left to right in table 1a–1d, and to compare 
the impact of different modeling decisions in the context of 
the intended use.

Model development for decision support occurs in the 
context of continual changes in on-the-ground distributions, 
environmental conditions, information availability, statis-
tical methods, and computational capacity. These ongo-
ing changes present both opportunities and challenges 
in interpreting model output. How should we interpret 
modeled distributions in a world where both the models 
and the reality behind them may be in flux? The frequency 
of iterative model updates can be related to the timing of 

management decisions, species’ population dynamics, and 
patterns of environmental variability. Locality information, 
environmental predictors, modeling methods, summaries 
of model outputs, and stipulation of appropriate uses can 
all be updated iteratively. An iterative modeling approach 
can reflect species’ changing distributions, provide a better 
understanding of key limiting factors, and increase buy-in 
from experts and end users. Surveys conducted within an 
iterative modeling process can also target locations of high 
model uncertainty and disagreement (Crall et al. 2013), and 
sensitivity analyses can reveal important sources of uncer-
tainty to help guide subsequent field and modeling efforts. 
New locations—and absence records reflecting nondetec-
tions—can then be integrated into subsequent models to 
refine distributions (figure 3). Decision-making structures 
based on adaptive management are particularly well poised 
to benefit from iterative modeling, because clear objec-
tives and recognition of key uncertainties can guide model 
improvements, and decisions can be revisited as information 
improves.

Decisions informed by species distribution models
Decisions that can be informed by species distribution mod-
eling generally fall into three categories: designing surveys 
for new populations and individuals, identifying priority 
locations and actions for conservation and management, 
and supporting regulatory decisions and streamlining com-
pliance. The type of decision an SDM is intended to support 

Figure 2. Species distribution map products for the Bog Turtle (Glyptemys muhlenbergii), a federally threatened species 
(New York Natural Heritage Program 2017). (a) Continuous surface showing the full range of predicted habitat suitability. 
(b) Map with a conservative threshold applied, which includes a higher proportion of the landscape so that potentially 
suitable sites are unlikely to be missed. (c) Map with a higher threshold applied so that the shaded areas have much higher 
likelihood of representing suitable habitat.
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Figure 3. USDA APHIS surveillance efforts for European gypsy moth (Lymantria dispar dispar) are guided by a species 
distribution model that is updated annually. (a) Distribution model output for beyond the federal quarantine and active 
spread areas for the 2015 survey year. (b) The risk map in the Pacific Northwest, overlaid with subsequent positive 
detections for that year, shown with stars. The model was used to guide survey effort, and successfully led to the detection 
of new populations, which were then eradicated. (c) Receiver operating curve showing iterative modeling improved 
model performance each year; this program exemplifies the operational use of iterative modeling (table 1c). The first 
model development in 2013 was an expert opinion, GIS-weighted overlay model. This model did not perform better 
than random (AUC = 0.5) in predicting positive detections. In 2014, the first statistical species distribution model was 
developed, which divided the study area into two management regions. The next iteration in 2015 explicitly tested spatial 
stationarity and objectively divided the study into model regions on the basis of changes in the importance of different 
spread pathways. The most recent model in 2016 retained the 2015 approach, but added the most recent outbreak 
detections in the Pacific Northwest.
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will shape the best practices for model development and 
interpretation (Guillera-Arroita et  al. 2015). Despite these 
differences related to intended use, there are commonalities 
about how to rank models that are applicable across taxa and 
geographies (table 1a–1d). We provide examples of SDMs 
that have been used to inform these three types of deci-
sions, and we complete an assessment of the quality of those 
models (table 2a–2d, supplemental table S1) to demonstrate 
how the SDM rubric summarized in the present article can 
concisely communicate the credibility of SDMs applied to a 
variety of species management contexts.

Designing surveys for new populations and individuals
Species distribution models can effectively guide surveys for 
new populations of rare species (Guisan et al. 2006, McCune 
2016). Distribution models have been shown to improve 
the efficiency of search efforts, with the number of new 
populations discovered exceeding that from searches guided 
by expert opinion (Aizpurua et  al. 2015). Use of SDMs to 
discover new or larger populations can lead to delisting peti-
tions under the ESA (Deseret milkvetch Astragalus desereti-
cus, 2017 Federal Register 82: 45,779–45,793) or contribute 
to the decision to not list a species under state and federal 
endangered species laws. For example, starting with just 
nine occurrence records, the Wyoming Natural Diversity 
Database developed an initial SDM for the Wyoming pocket 
gopher (Thomomys clusius) in 2006. The model was used 
to guide subsequent field surveys, an appropriate use for 
a model in the interpret with caution category because of 
low sample size (table 1a). New occurrence records were 
incorporated into a series of model iterations and refine-
ments (Keinath et  al. 2014), shifting the models out of 
interpret with caution categories (table 1a, 1d). These field 
and modeling efforts located 34 new occurrences and con-
tributed to a 2010 decision not to list the species under the 
federal ESA (2010; Griscom et  al. 2010 Federal Register 
75:19,592–19,607).

For invasive species, distribution models have been used 
to inform surveillance efforts for risk assessment and early 
detection and rapid response (EDRR) programs. For spe-
cies not yet introduced or established in a given country or 
region, risk assessments use models of potential distribu-
tions to evaluate whether the climatic conditions in the given 
area may be suitable for the potential invader (Venette et al. 
2010). Because these models often include extrapolation to 
novel regions with new environmental conditions, they are 
most credible when they are based on a clear understanding 
of limiting factors for the focal species (table 1b).

Another method to support EDRR is to integrate disper-
sal vectors as predictors, to reflect propagule pressure. For 
example, the US Department of Agriculture Animal and 
Plant Health Inspection Service (USDA APHIS) is charged 
with preventing the introduction, establishment, and spread 
of the European gypsy moth (Lymantria dispar dispar) into 
uninfested areas of the United States. APHIS currently 
develops iterative, annual spread-risk models that forecast 

the likelihood of detecting gypsy moth outside the federal 
quarantine area the next survey year (figure 3). Prior to 
using species distribution models to guide surveillance, field 
managers relied on state surveyors to interpret guidance 
from qualitative categories in a program manual to allocate 
traps to high-risk areas. The first attempt to standardize 
surveillance nationally was an expert-created, weighted GIS 
layers model, an approach characterized by low repeatabil-
ity and performance (table 2a–2d, table S1, figure 3). Poor 
model performance motivated a second and more objec-
tive model iteration: a species distribution model. USDA 
APHIS collaborated with the US Geological Survey and the 
USDA Forest Service to develop statistically rigorous and 
defensible methodologies (table 2a–2d, table S1). The model 
was regionalized to capture the transitions in mechanisms 
of spread (natural to human assisted) across space (Cook 
et al. 2019). In 2015, the risk model correctly predicted an 
outbreak of gypsy moth in the Pacific Northwest that was 
subsequently eradicated (figure 3). The surveillance pro-
gram uses the updated statistical model output to prioritize 
trap surveillance nationally for the next year, and by utilizing 
continuous predictions, follows ideal practices for table 1d. 
The field observations of presence and absence are then used 
to validate and improve the next year’s model, thus improv-
ing the quality of the model (table 2a–2d) and successfully 
integrating iterative modeling into an operational context.

Prioritizing locations and actions for conservation 
and management
On-the-ground conservation and management requires 
selecting a set of actions and deciding where on the land-
scape to implement them. SDMs can be used to understand 
a species’ responses to attributes of land use and land cover 
that can be influenced by management and inform the selec-
tion of management actions. Spatial predictions from SDMs 
can be used to direct management and conservation actions 
to priority locations. For example, a model developed by 
West and colleagues (2017) used remotely sensed indices as 
environmental predictors within an SDM to predict loca-
tions that had high cheatgrass (Bromus tectorum) cover in 
recently burned forest land in Wyoming. In this case, the 
environmental predictors were chosen to reflect the man-
agement need to identify locations with high cheatgrass 
cover rather than locations with potential for high cheatgrass 
cover, tailoring the model to its intended use (table 1b). This 
model used best practices, with no interpret with caution 
classifications (table 2a–2d, table S1), making it suitable 
for use in guiding the desired management activity: weed 
control. The Medicine Bow National Forest and Wyoming 
Game and Fish presented model results to partner agencies 
and organizations to obtain funding for control efforts and 
then to guide the resulting aerial herbicide application, with 
the goal of restoring habitat for native species (figure 4).

There are often relatively high costs associated with 
management and conservation actions, so model outputs 
with few false-positive errors can be useful in the context 
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Table 2a. Example overview of model attributes (intended use) for case studies presented in our figures.

Flatwoods 
salamander

European gypsy moth 
(2013 GIS version)

European gypsy 
moth (2016 
statistical 
version) Cheatgrass

Uinta Basin 
hookless 
cactus Bog turtle

Intended use Incorporation 
into regional 
conservation 
plan to support 
conservation and 
management 
needs for 
a diverse 
stakeholder group

Guide APHIS 
surveillance program

Guide APHIS 
surveillance 
program

Guide herbicide 
application for 
control

Guide 
premanagement 
survey locations 
in relation to 
proposed energy 
extraction 
locations 

To support 
environmental 
review 
conducted by 
agencies and 
species recovery 
efforts

Table 2b. Example overview of model attributes (species data) for case studies presented in our figures.

Flatwoods 
salamander

European gypsy moth 
(2013 GIS version)

European gypsy 
moth (2016 
statistical 
version) Cheatgrass

Uinta Basin 
hookless 
cactus Bog turtle

Presence data 
quality

Ideal Interpret with caution Ideal Ideal Ideal Ideal

Absence/
background data

Acceptable Interpret with caution Ideal Ideal Acceptable Acceptable

Evaluation data Acceptable Interpret with caution Ideal Ideal Ideal Acceptable

Ecological 
and predictive 
relevance

Acceptable Interpret with caution Ideal Ideal Ideal Acceptable

Spatial and 
temporal 
alignment

Acceptable Interpret with caution Ideal Ideal Ideal Acceptable

Table 2c. Example overview of model attributes (modeling process) for case studies presented in our figures.

Flatwoods 
salamander

European gypsy moth 
(2013 GIS version)

European gypsy 
moth (2016 
statistical 
version) Cheatgrass

Uinta Basin 
hookless 
cactus Bog turtle

Algorithm choice Ideal Interpret with caution Ideal Ideal Ideal Ideal

Sensitivity Acceptable Interpret with caution Ideal Ideal Ideal Acceptable

Statistical rigor Acceptable Interpret with caution Ideal Ideal Ideal Acceptable

Performance Acceptable Interpret with caution Ideal Ideal Ideal Acceptable

Model review Ideal Acceptable Ideal Ideal Ideal Ideal

Iterative Acceptable Interpret with caution Ideal Acceptable Ideal Acceptable

Table 2d. Example overview of model attributes (model products) for case studies presented in our figures.

Flatwoods 
salamander

European gypsy moth 
(2013 GIS version)

European gypsy 
moth (2016 
statistical 
version) Cheatgrass

Uinta Basin 
hookless 
cactus Bog turtle

Mapped products Acceptable Interpret with caution Acceptable Acceptable Ideal Acceptable

Interpretation 
support products

Ideal Interpret with caution Ideal Ideal Ideal Ideal

Reproducibility Acceptable Interpret with caution Ideal Ideal Ideal Acceptable
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of spatial planning (Loiselle et al. 2003). SDMs can provide 
an efficient means to identify candidate areas for protection 
and focus inventory efforts to confirm species presence. 
The costs of implementing management and conservation 
strategies also make it important to ground-truth modeled 
distributions (table 1c). Reserve design algorithms have 
combined outputs from SDMs with information about costs 
to optimize selection of conservation investments (Moilanen 
2005); these methods are flexible in the number of species 
that can be considered. Similarly, distribution modeling 
can guide and support green certifications. For New York’s 
state forests, distribution model outputs were used to guide 
timber harvest strategies and to ensure management com-
patible with the ranges of rare species. The resulting forest 
management plans were components of annual reviews by 
the Forest Stewardship Council and the Sustainable Forestry 

Initiative, leading to dual sustainability 
certifications for all state forests in New 
York (SCS Global Services 2016).

Regulatory decisions and 
streamlining compliance
Regulatory decisions, such as those gov-
erned by the ESA, can be associated 
with substantial costs and great scrutiny. 
Knowledge of a species’ current distri-
bution is one part of complex analyses 
designed to evaluate likely persistence, 
and refined distribution maps can inform 
multiple aspects of ESA implementation. 
For petitioned species, SDMs have been 
used to locate additional populations and 
estimate the extent of available habitat 
(Griscom et  al. 2010). For listed spe-
cies, SDMs have been used with other 
information to evaluate potential effects 
from proposed land-use actions, assess 
spatially explicit threats, identify critical 
habitat, and otherwise direct recovery 
efforts to areas with optimal conditions 
for species persistence (Guisan et  al. 
2013). SDMs have helped streamline ini-
tial site assessments in support of con-
sultations under section 7 of the ESA, 
in which federal agencies assess whether 
an action they carry out, fund, or permit 
may affect a listed species. For example, 
an ensemble of distribution models for 
the threatened Uinta Basin hookless cac-
tus (Sclerocactus wetlandicus) was used 
to determine where within a proposed 
energy lease area to require a prelease 
survey for the species (figure 5, table 
2a–2d; Edwards et al. 2016). In this case, 
because multiple rare plant species are 
located within an area with high energy 

potential, SDMs were built for each species and collectively 
used to guide compliance and siting decisions. Again, given 
the type of decision, the models used to inform decisions 
had all attributes classified in the ideal or acceptable catego-
ries (table 2a–2d).

Beyond the ESA, SDMs can also inform other decisions 
that require compliance. For example, SDMs were one of 
four lines of evidence used to establish the potential inva-
siveness of large snakes for the US mainland (Reed and 
Rodda 2009). This assessment was a key piece of evidence 
in the regulation of importation and movement of four 
snake species in the United States (2012 Federal Register 77: 
3330). For the Burmese python (Python bivittatus), models 
estimated a broad potential distribution throughout the 
continental United States (Reed and Rodda 2009, Rodda 
et  al. 2009). This result was challenged by another SDM 

Figure 4. Probability of cheatgrass (Bromus tectorum) cover at least 40% 
within the boundaries of the Squirrel Creek wildfire in the Medicine Bow 
National Forest in Wyoming. A species distribution model was created linking 
field plot data to remotely sensed imagery and topographical indices (West et al. 
2017). Model development was based on field-collected absence information 
(table 1a), included iteration based on expert review (table 1c), and illustrated 
the appropriate selection of predictors for the desired use because remotely 
sensed spectral indices captured where the species was abundant (table 1b). 
The model was used to delineate patches of at least two acres with a up to 50% 
probability of having cheatgrass cover over 40%, and these mapped outputs 
were successfully used to guide weed control. Black polygons show areas treated 
via helicopter application of an herbicide. The entire colored area reflects the 
fire perimeter, whereas variation in ownership within the burned area also 
contributed to the boundaries of sprayed polygons.
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suggesting a much more restricted potential distribution 
(Pyron et al. 2008). However, evaluating the Pyron and col-
leagues (2008) model highlighted attributes with an interpret 
with caution classification, including problematic selection 
of background data (table 1a) and a likely technical issue 
(overfitting; table 1c). Specifically, Rodda and colleagues 
(2011) compared models with interpret with caution and 
acceptable attributes and showed the choices made by Pyron 
and colleagues (2008) resulted in underpredicting potential 
habitat. Such contradictory predictions among models pro-
vided a cautionary tale, reinforcing the need for guidelines 
for developing SDMs, particularly when used for sensitive 
decisions (Jarnevich and Young 2015).

Moving forward
The examples explored in the present article demonstrate 
how SDMs have been, and could be, integrated into many 
types of conservation and management decisions. It is 
important to continue to improve the transparency and 
credibility of models used to inform decisions, and to inte-
grate new capacities and innovations into the rubrics that 
guide model development and assessment (Araújo et  al. 
2019). Users of model outputs must be able to easily access 
and interpret information on input data quality, model-
ing processes, and appropriate use of model outputs. We 
suggest that model developers produce user-friendly over-
views of key data inputs and modeling or methodological 
decisions that underlie model credibility (e.g., table 1a–1d, 
table S1). These summaries can provide a framework for 
assessing model outputs objectively, both for comparisons 
of multiple models for a single species, and for compari-
sons of distributional information quality across species. 
For the models underlying the visualizations shown in the 
present article, we apply our assessment rubric to provide a 
quality score for each aspect of the modeling process (table 
2a–2d). These models have all been used in guiding man-
agement decisions, and the only use of a model with any 
interpret with caution classification was to survey for new 
locations, which were then used to improve the model via 
an iterative process.

Two different issues limit the use of SDMs for inform-
ing species management decisions: The first is develop-
ing credible and repeatable distribution models for many 
species and the second is accessibility of model inputs 
and outputs and their respective descriptions. The sheer 
number of species of management interest is a challenge 
because model credibility for decision-making benefits 
from, and may require, species-specific covariate selec-
tion, model evaluation, field validation, model iteration, 
and peer review. Nevertheless, developing credible SDMs 
for many species could be facilitated by centralized open 
access repositories for model ingredients, such as validated 
species occurrence data, tools to filter occurrence data by 
its quality, and relevant geospatial environmental layers. 

Figure 5. Top panel shows known locations of four 
rare plant species (SCWE: Uinta Basin hookless cactus 
Sclerocactus wetlandicus; SCBR12: Pariette cactus 
Sclerocactus brevispinus; ASDEN: Elizabeth’s milkvetch 
Astragalus desperatus; PEFL8: Flowers’ beardtongue 
Penstemon flowersii) in relation to energy potential 
and the boundary of a proposed energy lease area 
in the Colorado Plateau ecoregion of western North 
America (Edwards et al. 2016). The lower panel 
highlights the use of statistical ensembles (table 1c–d). 
It depicts the ensemble of five distribution models for 
the Uinta Basin hookless cactus, a federally threatened 
species, with maximum concordance (5) indicating all 
five distribution models predict presence in the same 
pixel location. Lower concordance values indicate 
fewer models predict presence at a given location. The 
concordance is one output from ensemble SDMs that, 
for this example, can provide the basis for decisions 
regarding whether prelease surveys for the plant are 
or are not warranted in a given location within the 
proposed energy lease area.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/advance-article-abstract/doi/10.1093/biosci/biz045/5505326 by guest on 06 June 2019



Forum

12   BioScience • XXXX XXXX / Vol. XX No. X https://academic.oup.com/bioscience

Compilation of data inputs is one of the most time-con-
suming stages of modeling, and information accessibility, 
rather than biological relevance, often drives selection of 
data sources. Several repositories for occurrence data exist, 
with the Global Biodiversity Information Facility (GBIF) 
being the largest globally, with several nodes such as the 
US Biodiversity Information Serving Our Nation (BISON). 
Accessibility of occurrence data and other inputs is a criti-
cal component of model reproducibility, although precise 
locality information for rare and sensitive species may not 
be made available publicly in many cases. A major need 
is to develop and make available environmental layers 
that more directly drive range limits for groups of taxa. 
In one scenario for efficient and credible modeling, open 
access repositories of high quality data inputs could be 
combined with species-specific expertise via collaborations 
between government agencies, academics, nongovernmen-
tal organizations, natural heritage programs, and local 
stakeholders.

Open access repositories for model inputs and outputs 
could aid in model evaluation and incorporation into deci-
sion-making, just as input data repositories, code reposi-
tories (e.g., GitHub), and customizable tools for model 
fitting and evaluation (e.g., Thuiller et al. 2009, Morisette 
et al. 2013, Kass et al. 2018) are useful for species-specific 
and multispecies modeling. For each species, model out-
puts created by a variety of modelers for diverse purposes 
could be displayed and compared, along with objective 
information on the quality of model attributes, as in table 
2a–2d and table S1. SDMs already exist for many taxa and 
geographies, but many are not easily discoverable. Even 
when discovered, decisions underlying a model’s scientific 
rigor and credibility may not be documented, making it 
difficult to determine their appropriateness for a manage-
ment decision. A repository including model output along 
with an assessment rubric such as the one presented in the 
present article could facilitate discoverability and inter-
pretation of existing SDMs. Furthermore, it would allow 
for outputs of models developed via code to be compared 
and integrated with those developed via graphical user 
interfaces. A customizable visualization platform could 
make model outputs more accessible and interpretable 
to decision-makers, while also accommodating iterative 
modeling efforts that improve our knowledge over time 
and maintain the relevance of model outputs in the context 
of global change.

Conclusions
Species distribution models can provide a repeatable and 
defensible basis for informing a broad range of species man-
agement decisions. The case studies we present in the pres-
ent article illustrate the use of distribution model output 
by state and federal government agencies, often reflecting 
public–private partnerships. There are many opportunities 
to leverage distribution models more broadly, because many 
common species management decisions are currently based 

on subjective, coarse, and incomplete distributional infor-
mation. We present guidelines for model development and 
communication, which should enhance the utility of SDMs 
for decision support, while still enabling decision-makers 
to determine how model outputs are used and integrated 
with other information. We encourage model developers to 
aim for decision quality in their modeling process and to 
develop user friendly interpretive products that are based on 
a consistent model evaluation rubric to enhance their appli-
cability to a broader range of users (table 1a–1d). Systematic 
support for iterative modeling and field validation efforts 
will improve the quality of available input data and the 
degree of confidence in model predictions. Continental and 
global-scale efforts to improve species’ occurrence informa-
tion, available predictors, and computational platforms will 
increase the efficiency of species–specific model develop-
ment. The guidelines we present in the present article apply 
to a broad suite of decisions and can be used to generate 
credible knowledge of species distributions.

Supplemental material
Supplementary data are available at BIOSCI online.
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